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Abstract:
Administration of azithromycin after allogeneic hematopoietic stem cell transplantation for
hematological malignancies has been associated with relapse in a randomized phase 3 controlled
clinical trial. Studying 240 samples from patients randomized in this trial is a unique opportunity
to better understand the mechanisms underlying relapse, the first cause of mortality after
transplantation. We used multi-omics on patients’ samples to decipher immune alterations associated
with azithromycin intake and post-transplant relapsed malignancies. Azithromycin was associated
with a network of altered energy metabolism pathways and immune subsets, including T cells biased
toward immunomodulatory and exhausted profiles. In vitro, azithromycin exposure inhibited T cells
cytotoxicity against tumor cells and impaired T cells metabolism through glycolysis inhibition,
mitochondrial genes downregulation, and immunomodulatory genes upregulation, notably SOCS1. These
results highlight that azithromycin directly affects immune cells that favor relapse, which raises
caution about long-term use of azithromycin treatment in patients at high risk of malignancies.

Conflict of interest: COI declared - see note

COI notes: G.S. and R.P.L received a research grant from Alexion Pharmaceutical Company. R.P.L
received a research grant from Novartis and Pfizer companies. G.S received fees from Pharmacyclics
LLC, Novartis, Incyte, Alexion, Amgen and Pfizer companies. D.M received fees from Novartis,
Incyte, Jazz Pharmaceuticals and CSL Behring companies. All other authors have no conflict of
interests to declare.

Preprint server: No; 

Author contributions and disclosures: Conceptualization: AB, DM; Methodology: DM, NV; Formal
analysis: NV, SLG; Figures generation: NV, SLG, DM; Investigation: NV, SLG, LB, AC, BH, DB, LD, AB,
MT, DG, EM, RI, KP, BI, PL; Resource: NV, AC, ST, PL, RPL, DM; Data Curation: NV, LB; Writing -
Original Draft: NV, DM; Writing - Review and Editing: GS, AB, DM; Visualization: NV, DM;
Supervision: DM; Project Administration: AB, DM; Funding Acquisition: GS, AB, DM

Non-author contributions and disclosures: No; 



Agreement to Share Publication-Related Data and Data Sharing Statement: Raw data are available on
public repository: (i) mass cytometry: FlowRepository FR-FCM-Z5ZB and FR-FCM-Z5L7; (iii)
metabolomic: Metabolights MTBLS406; (iv) single-cell RNA sequencing: GEO GSE197658 and GSE208399.
Analysis pipeline are available on Git repositories: https://gitlab.com/nivall/azimut-blood;
https://gitlab.com/nivall/azimut-in-vitro; https://gitlab.com/nivall/azimutscrna

Clinical trial registration information (if any): 



 
 
 

1/30 
 

Title: Azithromycin promotes relapse by disrupting immune and metabolic networks after 
allogeneic stem cell transplantation 
 
Short title: Azithromycin inhibits anti-tumor immune response 
 
Authors: Nicolas Vallet1, Sophie Le Grand1, Louise Bondeelle2, Bénédicte Hoareau3, Aurélien 
Corneau3, Delphine Bouteiller4, Simon Tournier5, Lucille Derivry1, Armelle Bohineust1, Marie 
Tourret1, Delphine Gibert1, Ethan Mayeur1, Raphael Itzykson6, Kim Pacchiardi6, Brian Ingram7, 
Stéphane Cassonnet2,8, Patricia Lepage9, Régis Peffault de Latour10,11, Gérard Socié1,10†, Anne 
Bergeron12†, David Michonneau1,10*† 
  
Affiliations: 
1Université de Paris Cité, INSERM U976; F-75010, Paris, France. 
2Pneumology unit, Saint Louis Hospital, Assistance Publique-Hopitaux de Paris; Paris, France. 
3Plateforme de Cytométrie de la Pitié-Salpétrière (CyPS), UMS037–PASS, Sorbonne Université 
- Faculté de Médecine; F‐75013, Paris, France. 
4Genotyping and Sequencing Facility, Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 
CNRS UMR 7225, Inserm U1127, Sorbonne Université UM75, CS21414 75646; Paris, France. 
5Core Facilities, Saint Louis Research Institute, Université de Paris Cité, UAR 2030 / US 
53; 75010, Paris, France. 
6INSERM UMR 944, IRSL, St Louis Hospital, University of Paris Cité; Paris, France.  
7Metabolon, Inc.; Morrisville, North Carolina, 27560, USA. 
8Service de Biostatistique et Information Médicale, Hôpital Saint-Louis, AP-HP; Paris, France. 
9Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute; Domaine de Vilvert, 78350, 
Jouy-en-Josas, France. 
10Hematology Transplantation, Saint Louis Hospital; 1 avenue Claude Vellefaux, 75010 Paris, 
France. 
11Cryostem Consortium. 
12Pneumology Department, Geneva University Hospitals; Geneva, Switzerland. 
†These authors contributed equally to this work. 
 
*Corresponding author  
David Michonneau 
Hematology and transplantation unit 
Saint Louis hospital  
1 avenue Claude Vellefaux 
75010 Paris, France 
Phone 33 1 71 20 75 90 
Fax 33 1 42 49 96 36 
Email: david.michonneau@aphp.fr 
 
Word counts: 4000 
Abstract word counts: 149 
Figure number: 7 
Table number: 0 
References: 49 



2/30 
 

Scientific category: transplantation  

Key points (50 words):  

 Azithromycin after allogeneic hematopoietic stem cell transplantation increases relapse of 

malignancies in a randomized-placebo trial.  

 Azithromycin dampens anti-tumor immune response by disrupting T cell functions through 

inhibition of energy metabolism in immune cells. 

 

Abstract (149 words): Administration of azithromycin after allogeneic hematopoietic stem cell 

transplantation for hematological malignancies has been associated with relapse in a randomized 

phase 3 controlled clinical trial. Studying 240 samples from patients randomized in this trial is a 

unique opportunity to better understand the mechanisms underlying relapse, the first cause of 

mortality after transplantation. We used multi-omics on patients’ samples to decipher immune 

alterations associated with azithromycin intake and post-transplant relapsed malignancies. 

Azithromycin was associated with a network of altered energy metabolism pathways and 

immune subsets, including T cells biased toward immunomodulatory and exhausted profiles. In 

vitro, azithromycin exposure inhibited T cells cytotoxicity against tumor cells and impaired T 

cells metabolism through glycolysis inhibition, mitochondrial genes downregulation, and 

immunomodulatory genes upregulation, notably SOCS1. These results highlight that 

azithromycin directly affects immune cells that favor relapse, which raises caution about long-

term use of azithromycin treatment in patients at high risk of malignancies. 
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INTRODUCTION 

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for 

hematologic malignancies. Significant efforts aim to improve the survival and quality of life of 

patients suffering from acute or chronic graft-versus-host-disease (GvHD)1–4. Lung chronic 

GvHD, including bronchiolitis obliterans syndrome (BOS), affects about 10% of patients and is 

associated with poor outcomes5–7. Azithromycin was shown to prevent BOS following lung 

transplantation8. These observations led us to investigate if azithromycin could prevent BOS in a 

multicenter, randomized, placebo-controlled, double-blind, phase 3 study (ALLOZITHRO trial). 

Unexpectedly, azithromycin did not efficiently prevent BOS, and was associated with higher 

mortality due to an increased risk of relapse (hazard ratio [HR]=1.7, p=0.002). This led to an 

early interruption of the study9 and both a Food and Drug Administration and European 

Medicines Agency warnings about azithromycin use after allo-HSCT10. In a multicenter 

retrospective setting, azithromycin treatment for BOS after HSCT was also associated with a 

higher risk of secondary neoplasms11. 

Anti-tumoral effects of allo-HSCT rely on immune-mediated mechanisms by donor 

cells12 and relapse is the first cause of death following allo-HSCT13. Relapse involves immune 

escape mechanisms including downregulation of class II major histocompatibility complex 

(MHC) and expression of co-inhibitory molecules14–16. T cells are indeed associated with higher 

expression of co-inhibitory molecules, exhausted cells subsets, and defective effector 

functions15,17. Likewise, in autologous chimeric antigen receptor (CAR)-T cells infusions, T cells 

exhaustion is associated with a lower response rate18. 

Analyzing biological samples of patients from the ALLOZITHRO trial is a unique 

opportunity to decipher immune alterations associated with azithromycin and relapse after allo-
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HSCT. We applied mass cytometry and non-targeted metabolomics, to determine the impact of 

azithromycin on immune subsets and the metabolome of patients. This approach revealed that 

azithromycin treatment altered the frequency of many immune subsets together with alteration of 

their functional states. Considering that azithromycin could alter host or bacteria metabolism, we 

then examined the plasma and cellular metabolomes19,20. Integration of biological variables 

associated with azithromycin intake and clinical data highlighted an immuno-metabolic network 

associated with tumor relapse after allo-HSCT. We next uncovered the inhibitory properties of 

azithromycin on major T cells functions, including proliferation, cytokines production, 

cytotoxicity against leukemic targets. Finally, we studied how azithromycin impairs T cells 

metabolism during activation through glycolysis inhibition, downregulation of mitochondrial and 

pro-inflammatory gene expression, and upregulation of immune suppressive genes.  
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METHODS 

Study design 

This study was conducted with samples from patients included in the ALLOZITHRO trial 

(NCT01959100)9 and approved by the local ethic committee and Institutional Review Board 

(CPP Ile de France IV, IRB number 00003835, reference number 2013-000499-14). Samples 

were retrieved from CRYOSTEM Consortium21 (project number CS-1801, validated by IRB 

Sud-Méditerranée 1, reference number AC-2011-1420) and the Commission National 

Informatique et Liberté for data protection (reference number nz70243374i n°912120). All 

patients gave their written consent for clinical research. This non-interventional research study 

was carried out in accordance with the Declaration of Helsinki. Data analyses were performed 

using databases without patient identifiers. Healthy donor PBMC were isolated from residual 

blood after apheresis provided by Etablissement Français du Sang (18/EFS/032). 

 

Experimental procedures 

Details on experimental assays are described in Supplemental Methods.  

 

Data and code sharing: Raw data are available on public repository: (i) mass cytometry: 

FlowRepository FR-FCM-Z5ZB and FR-FCM-Z5L7; (iii) metabolomic: Metabolights 

MTBLS406; (iv) single-cell RNA sequencing: GEO GSE197658 and GSE208399. Analysis 

pipeline are available on Git repositories: https://gitlab.com/nivall/azimut-blood; 

https://gitlab.com/nivall/azimut-in-vitro; https://gitlab.com/nivall/azimutscrna 

  



6/30 
 

RESULTS  

 

Cohort description 

Samples from azithromycin (n=123) and placebo (n=117) patients were collected at a median 

time of 85 and 84 days after allo-HSCT, respectively (Figure 1)21. Characteristics of patients’ 

subsets within omics cohorts were comparable between azithromycin and placebo groups 

(Table S1). There was no major disparity in co-medication received by both groups, and 

azithromycin levels in metabolomic was not influenced by other drugs (Supplemental 

methods). Consistent with the findings of the ALLOZITHRO trial, a higher risk of relapse with 

azithromycin was observed in patients studied herein (Supplemental Figure S1). 

 

Patients treated with azithromycin exhibit reduced circulating T cells and higher anti-

inflammatory subsets 

We first ruled out that azithromycin could increase tumor cell proliferation or survival. Fourteen 

AML cell lines and primary leukemic cells from 8 patients were cultured with azithromycin. 

Regardless of azithromycin concentration, azithromycin was not associated with an effect on cell 

expansion (Supplemental Figure S2 and S3). 

We then focused on circulating immune cells in patients’ samples. To identify main 

PBMC cell subsets, FlowSOM algorithm22 was performed on CD45+ living cells using 31 

phenotypical markers (Figure 2A). Antigen expressions in the 55 phenotypical clusters were 

then manually checked to identify the corresponding cells subsets (Figure 2B-C, Supplemental 

Figure S4, Table S2). We found that patients included in the azithromycin arm were associated 

with a lower abundance of T cells (p=0.024), while no difference was observed for B, NK, or 
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myeloid lineage (Figure 2D). Next, we compared the frequency of phenotypical clusters among 

these subsets. Azithromycin-treated patients were characterized by higher central memory (CM) 

and effector memory (EM) CD4+ T cells with a Th2 profile defined by CXCR3-CCR4+ (p=0.045 

and p=0.010, respectively). A higher frequency of CCR5-FoxP3lo regulatory T cells (Tregs) was 

also found in azithromycin-treated patients (p=0.003). Azithromycin treatment was associated 

with a higher frequency of activated CM CD8+ cells characterized by high HLA-DR, CD38, and 

PD-1 expression, suggesting an exhausted phenotype (p=0.033). Finally, azithromycin intake 

was associated with lower switched memory CD5-CXCR3-CCR7+ B cells (p=0.033), with a 

higher abundance of immature CD56hiCCR5lo NK cells (p=0.003) and lower frequency of cluster 

40 among unidentified cells (p=0.016) (Figure 2E-F, Supplemental Figure S5-S6).  

 

Azithromycin intake is associated with exhausted T cells phenotypes 

We then studied T cell functional profiles with 14 additional functional markers using the 

FlowSOM algorithm. We identified 25 clusters representing activation or functional states of 

cells (Figure 3A). Three main profiles emerged: (i) activated cells characterized by the 

expression of granzyme B, Eomes or T-bet; (ii) naïve cells characterized by low levels of 

expression of most functional markers; and (iii) exhausted cells characterized by higher levels of 

TOX, PD-1, ICOS, CTLA-4, 4-1BB, LAG-3 and TIM-3 (Figure 3A).  

We next compared abundances of functional clusters among phenotypical clusters in 

azithromycin and placebo patients. We identified four T cells subsets significantly increased in 

azithromycin patients: TIGIT+ (functional state 16) in regulatory T cell CCR5-FOXP3lo (cluster 

3) (p=0.033) and in CM Th2 CD4+ PD1-CD25+ (cluster 2) (p=0.034), KLRG1+2B4+TIGIT+ 

(functional state 8) in CM CD8+PD1+CD38- (cluster 28) (p=0.048) and 



8/30 
 

TIGIT+KLRG1+2B4loPD-1loTOXloEomes+ (functional state 6) in CM double negative subset 

(cluster 21) (p=0.029). Activated cytotoxic GranzymeB+PD-1lo (functional state 10) in CM 

CD8+PD-1+CD38+ cell (cluster 36) was found to be decreased in azithromycin patients (p=0.039) 

(Figure 3A-B). 

 Together these results highlight that, patients treated with azithromycin were 

characterized by lower T cells abundance and were biased toward immunomodulatory Th2 

response, with increased FoxP3+ regulatory T cells and exhausted phenotypes characterized by 

the expression of TOX, PD-1, and TIGIT. 

 

Azithromycin is associated with variations in cell energy metabolism metabolites 

We then explored if azithromycin intake could impact plasma metabolome, considering that 

azithromycin could alter host- or microbiota-related metabolism19,23. We studied metabolites 

from frozen plasma and dried white blood cells pellets to uncover both circulating and 

intracellular metabolomic profiles. 853 and 352 metabolites were studied in plasma and dried 

cell pellets, respectively (Supplemental Figure S7).  

In plasma, 73 metabolites were significantly different between patients who received 

azithromycin and those from the placebo group. The most statistically significant changes were 

observed for (i) imidazole propionate, a microbial histidine-derived metabolite and precursor of 

glutamate24, lowered in the azithromycin group and (ii) plasmalogen metabolites with higher 

levels in azithromycin than placebo (Figure 4A, Supplemental Table S3). Imidazole propionate 

is a key regulator of glucose metabolism and an activator of the mTOR pathway24. Enrichment 

analysis of the significant metabolites revealed an overrepresentation of plasmalogen and acyl-

carnitine (polyunsaturated) pathways. Oxidative phosphorylation (OXPHOS), pantothenate, and 
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purine metabolism pathways were the most enriched but not statistically significant (Figure 4A, 

Supplemental Table S4). 

We then explored the intracellular metabolome and identified 10 significantly different 

metabolites between the two groups (Figure 4B, Supplemental Table S5). Heptanoate was the 

most significantly lowered metabolite in the azithromycin group. This metabolite is a medium-

chain fatty acid (MC-FA) involved in the tricarboxylic acid cycle (TCA) by acetyl-coenzyme A 

(CoA) and succinyl-CoA biosynthesis through mitochondrial beta-oxidation of long-chain fatty 

acid25. The MC-FA pathway was significantly enriched (Figure 4B, Supplemental Table S6). 

Altogether these results underline changes in pathways converging to acetyl-CoA 

synthesis from mitochondrial beta-oxidation through enrichment in acyl-carnitine and MC-FA 

pathways for its use in OXPHOS. CoA was recently found to enhance CD8+ Tc22 anti-tumoral 

functions26. Here, the precursor of CoA, pantothenate, was increased in the azithromycin group. 

This may be related to the metabolite accumulation because of lower incorporation in CoA as 

reported when inhibiting pantothenate kinase (PANK)27. Supporting this hypothesis, acyl-

carnitine metabolites were higher in azithromycin patients as observed within PANK inhibited 

hepatocytes (Supplemental Table S3)27. Additionally, the enrichment in plasmalogens suggests 

that immune-regulatory pathways are involved in the azithromycin effect as higher levels of 

plasmalogens are associated with post-transplant immune tolerance28. 

 

Variables associated with azithromycin intake are also associated with relapse 

To study the interactions between variables significantly associated with treatment groups and 

determine whether these variables were also associated with relapse, we studied patients with 

malignancies for which we had all biological data (multi-omics cohort) (Figure 1, 
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Supplemental Table S1). In these patients, sample collection preceded relapse at a median time 

of 6.36 (interquartile range [IQR]: 1.92-12.03) months in the azithromycin group and 16.58 

(IQR: 5.14-25.05) months in the placebo group, and azithromycin intake was associated with a 

higher cumulative incidence of relapse (HR=1.81, 95%CI [1.10-3.02], p=0.02). We first 

determined if differences associated with azithromycin intake were more pronounced in patients 

who relapsed (Supplemental Figure S8). Immune subsets and metabolites whose variations 

were associated with azithromycin intake were also analyzed individually for their association 

with relapse (Supplemental Table S7). 

Since these variables may be associated with relapse in a multivariate manner, we used 

principal component analysis to perform dimension reduction (Figure 4C, Supplemental 

Figure S9A). Then, to measure the association of these components with relapse, we used a 

multivariate competing Fine and Gray risk model that included treatment groups as covariate. 

Three components (#7, #13, #25) were significantly associated with relapse (Figure 4D, 

Supplemental Table S8), and all omics layers contributed to these components (Figure 4E). 

Variables that contributed to at least 1% of components were considered as significant 

contributors and thus were associated with relapse (Supplemental Figure S9B-D). Among the 

94 variables that differed between azithromycin and placebo patients, 59 contributed 

significantly. Cell subsets were PD1+ CM CD4+ Th2 (cluster 4), CD56hiCCR5lo NK cells 

(cluster 38) and switched memory B cells (cluster 34), CM CD8+ T cells PD1+CD38+ 

(cluster 36), TIGIT+ (state 16) in PD1- CM Th2 (cluster 2), KLRG1+2B4+TIGIT+ (state 8) in 

CM CD8+ PD1+CD38- (cluster 28) and Granzyme B+ and PD1lo (state 10) in CM CD8+ 

(cluster 36). Interestingly, one of the first contributors was white blood cells intracellular 2,3-

diphosphoglycerate, a metabolite involved in glycolysis. Enriched plasmatic pathways included 
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(i) energy metabolism: Fatty Acid Dicarboxylate, CoA Metabolism, (ii) immunomodulator 

mechanisms: pregnenolone steroids, primary bile acid, plasmalogen and (iii) purine and 

pyrimidine metabolism (Supplemental Figure S10A). In cells, most enriched metabolomic 

pathways also encompassed energy metabolism: MC-FA, and dinucleotides (Supplemental 

Figure S10B). 

To highlight inter-omics relationships, we next performed correlations analyses. The 

distribution of significant correlations across omics and variables correlations are depicted in 

Figure 4F-G. The correlation network identified different clusters of variables in which at least 

one variable contributed to relapse. State 8 (TIGIT+KLRG1+2B4+) in CM CD8+ PD1+CD38- 

(cluster 28) were correlated with 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid (3-CMPF), 

a uremic toxin known to inhibit mitochondrial respiration (Figure 4G). 

 Altogether these results illustrate that among variables associated with azithromycin 

intake, Th2 and exhausted T cells, and energy metabolism pathways, notably glycolysis-derived 

metabolites, contributed specifically to relapse. 

 

Azithromycin intake is associated with transcriptional changes in energy metabolism, cell 

cycle and inflammation pathways 

We then performed single-cell RNA sequencing coupled with cellular indexing of epitopes 

(CITE-seq) on 31 patients’ samples (Figure 5A and Table S9). Clustering 65,382 cells using 

cell surface antigen expression allowed the identification of 23 immune subsets (Figure 5B-C). 

Gene set enrichment score was calculated in each subset after differential gene expression 

analyses. Consistent with our metabolomic results, metabolism pathways were enriched in 

immune cells, including OXPHOS, glycolysis, cholesterol and fatty acid metabolism. Immune 
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functions were also influenced by azithromycin exposure, including IFN-⍺ and IFN- responses, 

complement pathway, inflammatory response and cytokine signaling pathways. Signaling 

pathways involved in immune response such as mTORC1, STAT3, STAT5 and NFkB signaling 

pathways were enriched. Finally, cell cycle related pathways (E2F, mitotic spindle, G2M 

checkpoint, MYC) were enriched in various cell subsets (Figure 5D). Since T cells frequency 

was lowered in azithromycin patients, we calculated cell cycle score in T cells main subsets. We 

found that higher frequency of CD4+ T cells were in G2M phases (p=0.032) (Figure 5E). 

 

Azithromycin exposure does not affect class II MHC expression by antigen presenting cell 

or tumor cell 

Downregulation of class II HLA has been previously involved in post-transplant relapses14. 

Azithromycin was not associated with downregulation of HLA-DR expression on antigen 

presenting cells (APC) from ALLOZITHRO trial samples. Transcriptomic assays did not unveil 

a downregulation of class II gene expression. In vitro, APC exposed to azithromycin did not 

lower HLA-DR DQ DP proteins expression. Primary leukemic cells exposed to azithromycin 

were not associated with lower expression of HLA-DR DQ DP proteins (Supplemental 

Figure S11). 

 

Azithromycin modulates T cells functions by inhibiting glycolysis during activation 

To evaluate if azithromycin may have a direct impact on PBMCs and since azithromycin was 

associated with a lower abundance of T cells and higher frequency of G2M CD4+ T cells, we 

studied the effects of azithromycin on T cells proliferative functions in vitro. CD3+-sorted cells 

from HD were incubated for 24 hours with azithromycin at 10 mg.L-1 and 20 mg.L-1 before 
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activation with anti-CD3/CD28 beads to mimic the azithromycin intake before allo-HSCT. After 

48 hours of culture, we observed a dose-dependent inhibition of CD4+ and CD8+ T cells 

proliferation (Figure 6A). Cell viability was not impacted by azithromycin (Supplemental 

Figure S12A-B). The effect of azithromycin on proliferation was reversible after a wash-out of 

24 hours before activation (Supplemental Figure S13). This result confirms a specific effect of 

azithromycin on T cells and is not in favor of a non-specific toxic effect. 

We then treated the cells with cyclosporin A to mimic the effect of GVHD prophylaxis. 

This revealed that effects of azithromycin and cyclosporin A were additive in CD8+ T cells and 

that azithromycin at 10 mg.L-1 had an inhibitory effect comparable to cyclosporin at a usual dose 

of 150 ng.mL-1 (Supplemental Figure S14). 

Next, to assess if azithromycin might also affect cytokine production functions, we 

studied cytokines levels on T cells supernatant with multiplex immunoassays. After two days of 

activation, all evaluated cytokines except IL-4 and IL-13 were dose-dependently reduced in 

supernatants from azithromycin-treated cells. After five days of activation, IL-13 levels were 

increased by azithromycin exposure (Supplemental Figure S15-S17). These results revealed 

that azithromycin inhibited the secretion of pro-inflammatory and anti-tumoral cytokines such as 

IL-2, IL-15, IL17, IFN-γ, IFN-⍺ and TRAIL. Consistent with a higher abundance of Th2 subsets 

in patients from the clinical trial, azithromycin promoted the Th2 pathway in vitro, as illustrated 

by a higher IL-13 level. 

To unravel whether azithromycin could inhibit anti-tumoral T cells cytotoxic functions, 

anti-CD19 chimeric antigen receptor (CAR)-T cells were cultured for 24 hours with 

azithromycin then incubated with CD19+ NALM6 lymphoblastic leukemia cells line. The 
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percentage of specific lysis was dose-dependent and reduced by azithromycin (Figure 6B). 

Treatment did not impact CAR-T cells viability (Supplemental Figure S12C). 

Metabolomic analyses revealed enrichment in energy metabolism pathways in 

azithromycin-treated patients and in relapsed patients. We thus hypothesized that azithromycin 

exposure could impair energy metabolism in T cells during the immune response. Since 

glycolysis plays a central role in ATP synthesis during T cells activation29, we studied energy 

metabolism following anti-CD3/CD28 activation in T cells from HD. To characterize the impact 

of azithromycin on the CD3+ subtypes, CD4+ and CD8+ T cells were sorted and incubated for 

24 hours in azithromycin 10 mg.L-1. Glycolytic activity measured by extracellular acidification 

rate (ECAR) after T cell activation was reduced in CD4+ and CD8+ cells treated by azithromycin 

(Figure 6C). Mitochondrial oxidative phosphorylation measured by oxygen consumption rate 

(OCR) was not different between the two groups (Figure 6C). Our results argue that 

azithromycin dampens immune cell functions by inhibiting glycolysis during activation, while 

not affecting OXPHOS metabolism. This mechanism could impair normal T cells activation and 

differentiation during immune response after allo-HSCT. 

 

Azithromycin inhibits TCR signaling pathways following activation 

Using mass cytometry, we studied signaling pathways to evaluate if their inhibition may drive 

the dampening of glycolysis and effector functions. At five time-points following anti-

CD3/CD28 activation we measured 14 signaling proteins among 23 PBMC subsets from eight 

HD (Figure 7A and Supplemental Figures S18-S19). Analysis disclosed an inhibition of TCR 

signaling in CD4+ Tregs and double negative subsets and in CM and EMRA CD8+ subsets. 
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Additional inhibition of pAkt, pmTOR, and pERK were also found in CD4+ subsets (Figure 7B 

and Supplemental Figure S20). 

Azithromycin promotes immunomodulatory gene expression and disrupts mitochondrial 

mRNA synthesis 

To explore whether azithromycin's impact on T cells was associated with phenotypical and 

transcriptional changes in CD4+ and CD8+ T cells, we perform CITE-seq on T cells from HD 

48 hours following anti-CD3/CD28 activation. Cells were clustered according to cell surface 

antigen expression (Figure 7C-D). Cluster abundance did not differ between treated and 

untreated conditions (Figure 7E). 

Transcriptomic analysis disclosed downregulation of pro-inflammatory genes: (i) IFNG 

in CD4+, in double-positive central memory (cluster 25) and Th1 (cluster 0) cells, and (ii) MIF 

in mostly all clusters (Figure 7F and Supplemental Figure S21). SOCS1 was upregulated in 

most clusters (Figure 7F). Since SOCS1 was recently found to impair anti-tumor response in 

Th1 cells30, we measured SOCS1 expression six days after activation by flow cytometry. We 

identified that SOCS1 expression was significantly higher in azithromycin-treated CD4+ 

(p=0.020) but not in CD8+ (p=0.074) T cells (Supplemental Figure S22). 

Downregulation of genes implicated in ATP biosynthesis was also observed with 

azithromycin: (i) mitochondrial mRNA involved in the synthesis of mitochondrial complexes I 

(MT-ND4, MT-ND5), IV (MT-CO3,) and V (MT-ATP6); (ii) NAMPT, involved in NAD 

synthesis, a required metabolite for mitochondrial complex I function (Figure 7D). Considering 

this impact of genes of the mitochondrial complex, we measured mitochondrial mass and 

function by flow cytometry. While we did not identify an impact of azithromycin on 

mitochondrial mass in CD4+ and CD8+, lower mitochondrial respiratory chain function was 
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identified with Tetramethylrhodamine, Methyl Ester, Perchlorate (TMRM) assays in CD4+ and 

CD8+ T cells (Supplemental Figure S23). Likewise, in resting T cells, basal and maximum 

mitochondrial respiration assed by OCR was reduced after 5 days of exposure to azithromycin in 

vitro (Supplemental Figure S24). 

Altogether, these results show that azithromycin impairs lymphocyte effector functions 

through downregulation of mitochondrial complexes I, IV, and V genes and functions, and of 

genes with pro-inflammatory function while it upregulates SOCS1 expression, a negative 

regulator of the immune response. 

 

DISCUSSION  

Understanding mechanisms of relapse after allo-HSCT is mandatory to improve our 

comprehension of anti-tumor immune response and to develop new therapeutic approaches. 

Here, we took advantage of samples from patients included in a randomized study to decipher 

how azithromycin promoted relapse in patients. To gain mechanistic insight, we performed in 

vitro experiments which highlighted that azithromycin promotes immunomodulatory 

mechanisms, notably through inhibiting main anti-tumoral T cells functions. 

We first identified immune changes associated with azithromycin intake in patients, 

including lower total T cells, a higher proportion of Th2-biased T cells, and an increased 

proportion of naïve FoxP3+ regulatory T cells. Functional states of immune cells revealed 

increased proportion of exhausted lymphocytes, notably expressing inhibitory receptors TIGIT 

and PD-1 with TOX31, associated with azithromycin treatment. Exhaustion mechanisms had 

been previously reported to be associated with relapse17,32,33. Interestingly, similarly to what has 

been reported in non-responder to immune checkpoint inhibitors, we observed lower switched 



17/30 
 

memory B cells characterized by lower CXCR3 expression being associated with azithromycin 

intake34. 

To decipher azithromycin effects on anti-tumor response, we explored T cells functions 

after azithromycin exposure in vitro. It highlighted how azithromycin inhibits the proliferation of 

both CD4+ and CD8+ T cells after activation without impacting their survival. Azithromycin 

inhibited anti-tumor cytotoxicity functions of T cells and cytokine production, notably anti-tumor 

cytokines such as type 1 and 2 interferons and TRAIL35–37. In addition, higher level of IL-13, an 

interleukin that suppress type I responses in tumor environment38, was consistent with Th2-

biased cells subsets after azithromycin exposure. 

By integrating biological variables associated with azithromycin intake, we identified the 

PD1+ Th2 CD4+, exhausted PD1+ CD8+ T cells and NK cells subsets as main contributors to 

subsequent relapse, as well as pathways involving energy metabolism and CoA biosynthesis. 

Imidazole propionate was lower in azithromycin patients. This histidine-derived metabolite 

activates mTOR-S6K pathway27, and its absence in hepatocyte cultures is comparable to the 

effect of Rapamycin treatment, suggesting its importance in cell signaling24. Coenzyme A has a 

central role in enhancing anti-tumor cytotoxicity by promoting oxidative phosphorylation in 

CD8+ T cells26. In addition, 2,3-diphosphoglycerate involved in glycolysis was one of the first 

intracellular metabolite contributing to relapse. Metabolomic may be influenced by gut 

microbiota changes under azithromycin treatment or by changes in host metabolism that are not 

directly related to immune cells. Gene set enrichment from single cell transcriptomic analyses on 

PBMC from patients revealed that azithromycin was associated with enrichment in energy 

metabolism pathways like glycolysis, OXPHOS and fatty acid related pathways in immune cells. 

Direct effect on T cells metabolism was next confirmed in vitro, in which azithromycin exposure 
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inhibited glycolysis in both CD4+ and CD8+ subsets after activation. Glycolysis in T cells 

mobilizes ATP to gain effector functions following activation29. Previous studies have 

demonstrated that glycolysis inhibition could induce T cell exhaustion39,40. In addition, 

metabolically unfit T cells were found to be associated with lower anti-tumor activity41. 

Glycolysis is known to be regulated by the mTORC1-HIF1 pathway42,43. Here, we mainly found 

inhibition of TCR signaling pathway in T cells. mTOR signaling was inhibited in CD4+ subsets 

but not in CD8+. This may explain the higher inhibitory effect of azithromycin on CD4+ 

compared to CD8+ cells. This also suggests that glycolysis inhibition may not uniquely be 

ascribed to mTOR pathway but also to upstream TCR signaling. 

Single-cell analysis of gene expression revealed downregulation of mitochondrial genes 

after azithromycin exposure that was associated with impaired respiratory chain functions. 

Mitochondria metabolism produces ATP through oxidative phosphorylation and metabolites 

involved in the TCA and fatty acid oxidation40. Others have already reported that blocking 

mitochondrial protein translation either leads to decreased cytotoxic and effector functions in T 

cells44,45. Since azithromycin is known to inhibit bacterial ribosomal 50S subunit, azithromycin 

may thus also alter transcription of proteins involved in anti-tumor response such as IFN or 

TRAIL23. We identified SOCS1 as the most significantly upregulated gene, with higher protein 

expression after azithromycin exposure. SOCS1 was recently shown to abrogate Th1 responses, 

notably IFN-⍺ and IL-2 synthesis30. In a mice model, SOCS1 was shown to inhibit glycolysis 

through STAT3/HIF1a pathway46. This mechanism may also explain glycolysis inhibition 

observed in T cells treated with azithromycin. 

 To conclude, studying samples from patients included in ALLOZITHRO trial allowed us 

to decipher how azithromycin promotes relapse. There is currently extensive literature 
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suggesting that antibiotics impact alloreactivity, illustrated by GvHD-related mortality through 

gut microbiota changes47. Our results highlight that azithromycin directly affects immune cells 

and that these biological changes are associated with relapse after allo-HSCT. Knowing that 

GvHD incidence was not modified by azithromycin intake in the trial, the features identified in 

our study (and in others) including: Th248 and exhausted cells17,32,33, or metabolically unfit 

T cells41 may be more broadly associated with post-transplant relapses mechanisms. Beyond the 

context of allo-HSCT, azithromycin is widely used in chronic respiratory diseases23. Our results 

raise the question of the safety of using this treatment in patients at risk of cancer, such as 

chronic obstructive pulmonary disease patients49. 

  



20/30 
 

Acknowledgments:  

The authors thank all members of the CRYOSTEM Consortium and of the Francophone Society 

of Marrow Transplantations and Cellular Therapy (SFGM-TC) for providing patients samples 

used in this study and for their support. Authors thank Dr Marie-Hélène Schlageter, Dr 

Alessandro Donada and Dr Leila Perié (INSERM UMR168) for providing access to multiplex 

immunoassays instruments. Authors thank Dr Michaël Saitakis and Sebastian Amigorena 

(INSERM U932) for providing the CAR sequence. This work benefited from equipment and 

services from IGenSeq core facility, at ICM. 

 

Author contributions:  

Conceptualization: AB, DM; Methodology: DM, NV; Formal analysis: NV, SLG; Figures 

generation: NV, SLG, DM; Investigation: NV, SLG, LB, AC, BH, DB, LD, AB, MT, DG, EM, 

RI, KP, BI, PL; Resource: NV, AC, ST, PL, RPL, DM; Data Curation: NV, LB; Writing - 

Original Draft: NV, DM; Writing - Review and Editing: GS, AB, DM; Visualization: NV, DM; 

Supervision: DM; Project Administration: AB, DM; Funding Acquisition: GS, AB, DM 

 

Funding:  

This work was funding by the Association Leucémie Espoir, SOS oxygène, La Laurène, 

EGMOS association, HTC Project. NV was supported by the association Cancerologie du Centre 

and and research grant from ITMO Cancer of Aviesan on funds administered by Inserm 

(ASC20047HSA). SLG was supported by La Fédération pour la Recherche Médicale and 

Association Capucine (M2R202106013386).  

 



21/30 
 

Competing interests: G.S. and R.P.L received a research grant from Alexion Pharmaceutical 

Company. R.P.L received a research grant from Novartis and Pfizer companies. G.S received 

fees from Pharmacyclics LLC, Novartis, Incyte, Alexion, Amgen and Pfizer companies. D.M 

received fees from Novartis, Incyte, Jazz Pharmaceuticals and CSL Behring companies. All 

other authors have no conflict of interests to declare. 

 

  



22/30 
 

REFERENCES 

1. Zeiser R, von Bubnoff N, Butler J, et al. Ruxolitinib for Glucocorticoid-Refractory Acute 
Graft-versus-Host Disease. N Engl J Med. 2020;382(19):1800–1810.  
2. Zeiser R, Polverelli N, Ram R, et al. Ruxolitinib for Glucocorticoid-Refractory Chronic 
Graft-versus-Host Disease. N Engl J Med. 2021;385(3):228–238.  
3. Zeiser R, Blazar BR. Acute Graft-versus-Host Disease — Biologic Process, Prevention, 
and Therapy. N Engl J Med. 2017;377(22):2167–2179.  
4. Zeiser R, Blazar BR. Pathophysiology of Chronic Graft-versus-Host Disease and 
Therapeutic Targets. N Engl J Med. 2017;377(26):2565–2579.  
5. Williams KM. Bronchiolitis Obliterans After Allogeneic Hematopoietic Stem Cell 
Transplantation. JAMA. 2009;302(3):306.  
6. Bergeron A, Godet C, Chevret S, et al. Bronchiolitis obliterans syndrome after allogeneic 
hematopoietic SCT: phenotypes and prognosis. Bone Marrow Transplant. 2013;48(6):819–824.  
7. Bergeron A, Chevret S, Peffault de Latour R, et al. Noninfectious lung complications 
after allogeneic haematopoietic stem cell transplantation. Eur Respir J. 2018;51(5):1702617.  
8. Vos R, Vanaudenaerde BM, Verleden SE, et al. A randomised controlled trial of 
azithromycin to prevent chronic rejection after lung transplantation. European Respiratory 
Journal. 2011;37(1):164–172.  
9. Bergeron A, Chevret S, Granata A, et al. Effect of Azithromycin on Airflow Decline–
Free Survival After Allogeneic Hematopoietic Stem Cell Transplant: The ALLOZITHRO 
Randomized Clinical Trial. JAMA. 2017;318(6):557.  
10. U.S. Food and Drug Administration. FDA warns about increased risk of cancer relapse 
with long-term use of azithromycin (Zithromax, Zmax) antibiotic after donor stem cell 
transplant. 2018;  
11. Cheng G-S, Bondeelle L, Gooley T, et al. Azithromycin use and increased cancer risk 
among patients with bronchiolitis obliterans after hematopoietic cell transplantation. Biology of 
Blood and Marrow Transplantation. 2020;26(2):392–400.  
12. Copelan EA. Hematopoietic Stem-Cell Transplantation. New England Journal of 
Medicine. 2006;(354):1813–1826.  
13. Horowitz M, Schreiber H, Elder A, et al. Epidemiology and biology of relapse after stem 
cell transplantation. Bone Marrow Transplant. 2018;53(11):1379–1389.  
14. Christopher MJ, Petti AA, Rettig MP, et al. Immune Escape of Relapsed AML Cells after 
Allogeneic Transplantation. N Engl J Med. 2018;379(24):2330–2341.  
15. Toffalori C, Zito L, Gambacorta V, et al. Immune signature drives leukemia escape and 
relapse after hematopoietic cell transplantation. Nat Med. 2019;25(4):603–611.  
16. Gambacorta V, Beretta S, Ciccimarra M, et al. Integrated Multiomic Profiling Identifies 
the Epigenetic Regulator PRC2 as a Therapeutic Target to Counteract Leukemia Immune Escape 
and Relapse. Cancer Discovery. 2022;candisc.0980.2021.  
17. Noviello M, Manfredi F, Ruggiero E, et al. Bone marrow central memory and memory 
stem T-cell exhaustion in AML patients relapsing after HSCT. Nat Commun. 2019;10(1):1065.  



23/30 
 

18. Deng Q, Han G, Puebla-Osorio N, et al. Characteristics of anti-CD19 CAR T cell 
infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. 
Nat Med. 2020;26(12):1878–1887.  
19. Doan T, Hinterwirth A, Worden L, et al. Gut microbiome alteration in MORDOR I: a 
community-randomized trial of mass azithromycin distribution. Nat Med. 2019;25(9):1370–
1376.  
20. Zmora N, Bashiardes S, Levy M, Elinav E. The Role of the Immune System in Metabolic 
Health and Disease. Cell Metabolism. 2017;25(3):506–521.  
21. CRYOSTEM. CRYOSTEM Biological Resources. CRYOSTEM Biological Resources. 
2021;  
22. Van Gassen S, Callebaut B, Van Helden MJ, et al. FlowSOM: Using self-organizing 
maps for visualization and interpretation of cytometry data: FlowSOM. Cytometry. 
2015;87(7):636–645.  
23. Parnham MJ, Haber VE, Giamarellos-Bourboulis EJ, et al. Azithromycin: Mechanisms of 
action and their relevance for clinical applications. Pharmacology & Therapeutics. 
2014;143(2):225–245.  
24. Koh A, Molinaro A, Ståhlman M, et al. Microbially Produced Imidazole Propionate 
Impairs Insulin Signaling through mTORC1. Cell. 2018;175(4):947-961.e17.  
25. McDonald T, Puchowicz M, Borges K. Impairments in Oxidative Glucose Metabolism in 
Epilepsy and Metabolic Treatments Thereof. Front. Cell. Neurosci. 2018;12:274.  
26. St. Paul M, Saibil SD, Han S, et al. Coenzyme A fuels T cell anti-tumor immunity. Cell 
Metabolism. 2021;33(12):2415-2427.e6.  
27. Zhang Y-M, Chohnan S, Virga KG, et al. Chemical Knockout of Pantothenate Kinase 
Reveals the Metabolic and Genetic Program Responsible for Hepatic Coenzyme A Homeostasis. 
Chemistry & Biology. 2007;14(3):291–302.  
28. Michonneau D. Metabolomics analysis of human acute graft-versus-host disease reveals 
changes in host and microbiota-derived metabolites. 2019;10(1):5695.  
29. Pearce EL, Poffenberger MC, Chang C-H, Jones RG. Fueling Immunity: Insights into 
Metabolism and Lymphocyte Function. Science. 2013;342(6155):1242454.  
30. Sutra Del Galy A, Menegatti S, Fuentealba J, et al. In vivo genome-wide CRISPR screens 
identify SOCS1 as intrinsic checkpoint of CD4+ TH1 cell response. Sci Immunol. 
2021;6(66):eabe8219.  
31. Scott AC, Dündar F, Zumbo P, et al. TOX is a critical regulator of tumour-specific T cell 
differentiation. Nature. 2019;571(7764):270–274.  
32. Hutten TJA, Norde WJ, Woestenenk R, et al. Increased Coexpression of PD-1, TIGIT, 
and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell 
Transplantation. Biology of Blood and Marrow Transplantation. 2018;24(4):666–677.  
33. Gournay V, Vallet N, Peux V, et al. Immune landscape after allo-HSCT: TIGIT and 
CD161-expressing CD4 T cells are associated with subsequent leukemia relapse. Blood. 
2022;blood.2022015522.  



24/30 
 

34. Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote 
immunotherapy response. Nature. 2020;577(7791):549–555.  
35. Magenau JM, Peltier D, Riwes M, et al. Type 1 interferon to prevent leukemia relapse 
after allogeneic transplantation. Blood Advances. 2021;5(23):5047–5056.  
36. Shankaran V, Ikeda H, Bruce AT, et al. IFNγ and lymphocytes prevent primary tumour 
development and shape tumour immunogenicity. Nature. 2001;410(6832):1107–1111.  
37. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor–
related apoptosis–inducing ligand in vivo. Nat Med. 1999;5(2):157–163.  
38. Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol. 
2015;15(5):271–282.  
39. Martins CP, New LA, O’Connor EC, et al. Glycolysis Inhibition Induces Functional and 
Metabolic Exhaustion of CD4+ T Cells in Type 1 Diabetes. Front. Immunol. 2021;12:669456.  
40. Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. 
Immunity. 2022;55(1):14–30.  
41. Uhl FM, Chen S, O’Sullivan D, et al. Metabolic reprogramming of donor T cells 
enhances graft-versus-leukemia effects in mice and humans. Sci. Transl. Med. 
2020;12(567):eabb8969.  
42. Finlay DK, Rosenzweig E, Sinclair LV, et al. PDK1 regulation of mTOR and hypoxia-
inducible factor 1 integrate metabolism and migration of CD8+ T cells. Journal of Experimental 
Medicine. 2012;209(13):2441–2453.  
43. Salmond RJ. mTOR Regulation of Glycolytic Metabolism in T Cells. Front. Cell Dev. 
Biol. 2018;6:122.  
44. Lisci M, Barton PR, Randzavola LO, et al. Mitochondrial translation is required for 
sustained killing by cytotoxic T cells. Science. 2021;374(6565):eabe9977.  
45. Almeida L, Dhillon-LaBrooy A, Castro CN, et al. Ribosome-Targeting Antibiotics 
Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial 
Protein Synthesis. Immunity. 2021;54(1):68-83.e6.  
46. Piñeros Alvarez AR, Glosson-Byers N, Brandt S, et al. SOCS1 is a negative regulator of 
metabolic reprogramming during sepsis. JCI Insight. 2017;2(13):e92530.  
47. Shono Y, Docampo MD, Peled JU, et al. Increased GVHD-related mortality with broad-
spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human 
patients and mice. Science Translational Medicine. 2016;8(339):16.  
48. Jung U, Foley JE, Erdmann AA, Eckhaus MA, Fowler DH. CD3/CD28-costimulated T1 
and T2 subsets: differential in vivo allosensitization generates distinct GVT and GVHD effects. 
Blood. 2003;102(9):3439–3446.  
49. de Torres JP, Marín JM, Casanova C, et al. Lung Cancer in Patients with Chronic 
Obstructive Pulmonary Disease: Incidence and Predicting Factors. Am J Respir Crit Care Med. 
2011;184(8):913–919.  

  



25/30 
 

FIGURE LEGENDS 

 

Figure 1. Overview of the samples studied according to omics assays. Frozen peripheral 

mononuclear blood cells, plasma and cell pellets from patients included in the double blinded 

ALLOZITHRO study were retrieved from national CRYOSTEM biobank. All samples were 

collected after allogeneic hematopoietic stem cell transplantation, either at time of acute graft 

versus host disease or at the nearest visit by day 100. Patients’ characteristics and outcome are 

depicted in Supplemental Table S1 and Supplemental Figure S2. 

 

Figure 2. Azithromycin intake is associated with immune cells subsets changes. (A) Frozen 

peripheral mononuclear blood cells (PBMC) from patients included in placebo (PLA, n=106) or 

azithromycin (AZM, n=98) arm and from healthy donors (n=20) were thawed and analyzed by 

mass cytometry with a panel targeting 43 antigens used to cluster cells according to their 

phenotype and T cells functional state (naïve, activated or exhausted). Pre-processing pipeline 

was used to normalize data across batches and then identify singlets, CD45+ living cells. Fifty-

five cells phenotypical subsets were identified by using 31 phenotype antigens with FlowSOM 

algorithm. (B) Circular dendrogram showing the 55 cells subsets hierarchy colored according to 

the corresponding subsets and sized by frequency among CD45+ cells. (C) Uniform manifold 

approximation and projection (UMAP) depicting cells clustering colored according to their 

subsets. (D) Boxplots representing percentage of main PBMC subsets among living CD45+ 

according to sample groups. (E) Heatmap representing scaled expression of phenotypes antigen 

across the cell subsets manually ordered and annotated for visualization purposes. Targeted 

antigens are ordered by hierarchical clustering and unidentified cell subsets are shown in 



26/30 
 

Supplemental Figure S4. Fold changes of immune subsets in AZM group compared to PLA 

group are summarized with a bar plot (*p<0.05; **p<0.01, P values are shown in f panel). Bold 

names of subsets indicate significant difference. (F) Boxplots of statistically different subsets 

between AZM and PLA cohorts. For visualization purposes, square root transformation was 

applied on y-axis. All P values were calculated with two-sided Wilcoxon signed rank test. NK: 

natural killer, DN: double negative, EM: effector memory, EMRA: effector memory CD45RA+, 

Non-conv: non-conventional, MAIT: mucosal associated invariant T cells.  

 

Figure 3. T cells exhausted profiles are observed in patients treated with azithromycin. (A) 

Heatmap representing scaled expression of 14 functional antigens used to identify 25 functional 

state clusters with FlowSOM algorithm among 30 T cells phenotypical subsets. Below, a dot plot 

shows percentage of functional state clusters in each T cells subsets. Functional state clusters 

with only more than four percent of the corresponding cell subsets are drawn. Letters indicates a 

significant difference between azithromycin and placebo groups and the corresponding panel. 

(B-F) Boxplots of statistically different states subsets between azithromycin and placebo cohorts. 

For visualization purposes, square root transformation was applied on y-axis. All P values were 

calculated with two-sided Wilcoxon signed rank test. 

 

Figure 4. Azithromycin treatment and relapse are associated with changes in cell energy 

metabolism pathways. (A-B) Metabolomic analyses in plasma (A) and dried cell pellets (B) 

samples. Volcano plots and dot plots illustrate metabolites individual changes and pathway 

enrichment in patients treated by azithromycin (AZM) are compared to placebo (PLA). Volcano 

plots P values were calculated with two-sided Wilcoxon signed rank test; enrichment P values 
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were computed with hypergeometric test. (C) Omics integration method overview. Ninety-eight 

and 87 patients with mass cytometry, plasma and cell metabolomics samples in PLA and AZM 

cohorts were studied, respectively. Variables identified as statistically different between the two 

groups were used to reduce dimensionality with principal component analysis (PCA). Number of 

components to study was defined by a threshold of 80% cumulative percentage of variance 

explained. Patients coordinates in a 29 dimensions space were extracted from PCA result. (D) 

Forest plot representing the hazard ratio of relapse with the corresponding 95% confidence 

interval of a multivariate Fine-Gray model including each component and treatment groups as 

covariates with death as the competing event. Blue dots indicate principal components 

statistically associated with relapse. (E) Stacked bar plot depicting percentage of contribution of 

variables from each omics layers in the three components associated with relapse. Top 

contributing individual variables are shown in Extended Data Figure 1. (F) Chord diagram 

showing statistically significant inter-omic correlations. (G) Correlation networks of variables 

included in the multi-omics analyses. Nodes coordinates were calculated with multidimensional 

scaling algorithm and edges are drawn between correlated variables. Variable (node) that 

significantly contributed to relapse are illustrated by the blue color and size is correlated to the 

corresponding sum of contribution in significant dimensions. Area where nodes overlaid are 

zoomed and highlighted in yellow for visualization purposes. P value and correlation and 

coefficients were computed according to Spearman’s rank correlation. Correlations were 

considered statistically significant if adjusted P values with false discovery rate were below 0.05 

and Spearman’s absolute rho value above 0.3. 
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Figure 5. Azithromycin treatment is associated with enrichment of energy metabolism, cell 

cycle and immune response pathways. (A) Frozen peripheral mononuclear blood cells (PBMC) 

from patients (placebo, n=14 and azithromycin, n=17) were thawed and analyzed by cellular 

indexing of transcriptomes and epitopes by sequencing (CITE-Seq). Cells were clustered 

according to cell surface antigen expression. (B) Uniform manifold approximation and projection 

(UMAP) describing cells clustering. (C) Heatmap depicting scaled cell surface antigen 

expression in cell subsets. (D) Dot plot depicting enrichment analysis within each subset of cells 

using Hallmark gene sets. Only immune cells with at least one enriched pathway are depicted. P 

values were computed with adaptive multi-level split Monte-Carlo and adjusted with false 

discovery rate. (E) Cell cycle analysis from CITE-Seq with cell cycle score. P values were 

computed with two-sided matched-pair Wilcoxon rank test. NK: natural killer, DN: double 

negative, EM: effector memory, EMRA: effector memory CD45RA+, MAIT: mucosal 

associated invariant T cells, Clas.: classical, Int.: intermediate. 

 

Figure 6. Azithromycin inhibits T cells proliferative and cytotoxic functions by impeding 

energetic boost from glycolysis. (A) Sorted CD3+ cells from healthy donors (HD) peripheral 

mononuclear blood cells (PBMC) were stained with carboxyfluorescein succinimidyl ester 

(CFSE) and treated in vitro with azithromycin (AZM) or control (CTRL) for 24 hours before 

activation with anti-CD3/CD28 beads. Two days after activation, cells were retrieved from 

incubator and analyzed by flow cytometry. CFSE staining in CD4+ and CD8+ T cells subsets are 

shown in histograms (representative results) and boxplots (each dot is the median value of 3 

technical replicates). Results are from three independent experiments with six independent HD. 

(B) Anti-CD19 chimeric antigenic receptor (CAR)-T cells were cultured with AZM or control 
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for 24 hours and co-cultured with luciferase expressing CD19+ NALM6 cell lines overnight. 

Cell lysis was quantified by luminescence. Representative result is shown as a dot plot and 

pooled six independent experiments are depicted in boxplots. (C) Cell energy metabolism 

overview and corresponding glycolysis and oxidative phosphorylation (OXPHOS) assays from 

HD sorted CD4+ and CD8+ cells after 24 hours of incubation with AZM or DMSO (CTRL). 

Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were measured at 

time of activation with anti-CD3/CD28 antibody complexes then glycolysis was inhibited with 2-

deoxyglucose (2-DG). Dot plots show representative results and boxplots pooled results from 6 

independent experiments. All P values were computed with two-sided matched-pair Wilcoxon 

rank test. 

 

Figure 7. Azithromycin inhibits TCR signaling in T cells, promotes immunomodulatory 

pathways and impedes mitochondrial mRNA synthesis. (A) Thawed PBMC from eight 

healthy donors (HD) were treated with azithromycin (AZM) or control (CTRL) for 24 hours 

before CD3/CD28 activation. Activation was stopped at 0, 3, 5, 10 and 30 minutes. To prevent 

batch effect on sample labelling, samples from each donor were barcoded with a mix of anti-

CD45 antibodies then pooled before mass cytometry staining procedure. Single cells were then 

clustered with FlowSOM algorithm according to phenotype antigens expression. Area under the 

curve (AUC) of signaling mean signal intensity was computed. Clusters’ phenotypes are 

available in Supplemental Figure S18. (B) Dot plot depicting statistically significant difference 

in AUC between CTRL and AZM conditions. Individual differences at the 5 time-points are 

available in Supplemental Figure S20. P values were computed with matched-paired Wilcoxon 

Rank Sum test. pSTAT6 is not depicted as it was not statistically different. (C) CD3+ sorted 
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cells from ten HD were treated with AZM or CTRL for 24 hours before CD3/CD28 activation. 

Analysis was performed two days 2 following cells activation. Pie chart illustrating the number 

of living cells retrieved at the end of the single cell RNA sequencing with cell surface antigen 

embedding pipeline. Next, using cell surface antigen expression, 26 phenotypical cell clusters 

were identified as illustrated with the Uniform manifold approximation and projection (UMAP). 

(D) UMAP highlighting retrieved cells from activated conditions. (E) Heatmap representing 

manually ordered and annotated cell clusters with the corresponding scaled surface antigen 

expression. Abundances of clusters in cells treated with AZM or CTRL are depicted on boxplots. 

For visualization purposes, square root transformation was applied on x-axis. P values were 

computed with matched-paired Wilcoxon Rank Sum test. (F) Dot plot showing differentially 

expressed genes in each T cells clusters from volcano plots shown in Supplemental Figure S21. 

Only statistically significant changes are depicted. P values were computed with Wilcoxon Rank 

Sum test and adjusted with false discovery rate. 
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